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All mater ia ls  contain a large number of microdefects of various 
types whose development under the applied stress field remits in the 
formation of a system of cracks. The nature of the interaction of the 
cracks in this system may vary greatly and its investigation is a mat ter  
of considerable interest. Sel 'dovich noted that a checkerboard ar- 
rangement of  cracks (elastic plane weakened by a doubly-periodic 
system of cracks of equal length) must in certain conditions result in 
mutual  strengthening. 

In the present paper this problem is investigated on the basis of  
a numerical  solution of the problem of the theory of elasticity in ap-  
proximate form and the correcmess of the assumption is substantiated. 

1. Let us consider a doubly-periodic system of cracks with crack 
length 2l. Let ~ ,  co~ be the main periods, D the region occupied by 
the body, and Mkk the contour of  the crack with center at point 
p = kco~+ k'co 2 (k, k' = 0, ~1, e . . , )  (Fig. 1). The net is symmetr i -  
cal with respect to the x and y axes, and each crack is subjected to 
a uniform tensile stress P0. 
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Fig, 1. 

It is suggested in [1] that this problem can be reduced to finding 
two functions �9 (z) and �9 (z), regular with respect to D, which 
satisfy the following boundary condition 

co (T) + r (~) + 7~r (~) + T (T) = - p0 ,  

Let us now construct an approximate  solution of this problem.  
For this purpose we consider a single linear slot in an infinite plate ,  
the edge of which is subjected to a uniform load P0. In this case [1] 
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while the components  of the stress tensor are 
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Fig. 2 

Here 

X -- t6 (r~ - -  2r2i ~ cos 2q~+ 14),~= r2 sin 2r 
are tg'r%os '2q~ - -  ! 2 " (S) 

It is easy to see that as [z I --~ = the expressions (1) have the fol- 
lowing asymptotic representations 

(l~ (z) - -  p~ T (z) = p~ 
- 4-S  ' ~ " 

Figure 2 gives the relationships between the stresses calculated 
for unit applied load and the distance r for a given direction ~. The 
broken line represents the asymptotic value. It is easy to see that the 
true value of the stress at a given point is approximated with sufficient 
accuracy by the asymptotes in any direction even for points where the 
distance from the crack is of the order of the crack length. 1 

Thus, it is now possible to reduce the initial problem to the fol- 
lowing form. On e of the cracks, the edge of which is subjected to a 
uniform tensile stress P0, with center at the origin of the coordinate 
system is located in an infinite body, in which operates a system of 
dipoles with centers at points P = kcv 1 + k ' ~  (k, k' = 0, • ~ . . . ) .  
Since a single crack extends along the real axis, the determination 
of the total stress involves only the function ~(z )  = c / z  ~ (the value of 
the constant z = 1 / 4  po 12 ensures the necessary decrease of the stresses 
at infinity for this problem).  

For a field with a period rectangle B = kw 1 * k'~.2i, where the 
stress function c / z  2 is given at each point; determination of the total 
stress function leads to an elliptic Weierstrass function 

c 

~ , ~ . L ( : - ~  )~J '  (0 

where E' denotes summation over all the indices at the same t ime 
with the exception of k = k' = 0. 

tAsymptotic expressions for "distant" and "close" rows of parallel 
cracks are given by Koiter in [2]. 
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Eliminating the coordinate origin, we obtain the stress function 
for the field outside the crack 

'I 1 r (~ )=  ~ ( = ) -  ~ = c  ~ ~ i 

Along the real x axis we have 

X~ = YU = 2 B.e F (z) 
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The half-length ~ of an isolated symmetrical crack in dynamic 
equilibrium is determined from the equation (see [~]) 

l 
p(x) d x _ _  K (~) 

Here k is the cohesion modulus [3], and p(x) is the distribution 
of normal stresses in the uncracked body under the same load. 
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Fig. 4 

In the case considered 

p (x) po % Yv, 

while Yy is given by equation (6). 

(8) 

Substituting (8) into ('/) and integrating, after first interchanging 
the summation and integration signs, we get in dimensionless 
parameters 
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( B = k  "~-R4k 2-j-e 2, A=]/'B~----16k:e*, e =  l/L , Y = P o  ]/L/K). 

Summat ion  in the ordinary sums is only over even k and k', and 
in the double sums over all k and k', but so that the sum of these 
indices is even. 

Here for the sake of simplicity we have set wl = 2L, w 2 = L. In 
order to obtain solutions for any side lengths of the period rectangle 
in (9), after the summation sign k must be replaced by k~l/2L and 
k' by k'w2/L. 

Relation (9) for y = y (~) is given in Fig. 3 with ~ = 2L, w2 = 
= L, while Fig. 4 gives the relations for various periods ~2 (wt = 2L 
is fixed). These curves suggest certain conclusions. 
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Fig. 5 

The crack is stable if the stress Po needed to maintain it in dy- 
namic equilibrium increases with increasing crack length 2i. There 
exists a certain optimum value ~s  (with ~1 constant) of the side of 
the period rectangle at which the stress needed to maintain the crack 
in dynamic equilibrium reaches a maximum. In this case the length 
of the stable section of the curve is much larger than in the case of a 
crack reinforced by stiffening ribs which prevent it from spreading 
[4]. A reduction or increase of ~2 compared with ~2" leads to a re- 
duction of the maximum value of the stress until a~ 2 becomes equal 
to certain critical values w~l (w21 < w2*) and ~ z  (w~2 > ws  At 
~2 > ~2~ and w~ < u21 the curve has no growth segments. 

Thus, one crack with initial length 210 in a field of cracks of the 
same length may develop, with increasing P0, in accordance with one 
of the variants considered (Fig. 5). 

If the curve corresponding to the given ~ has no stable section 
( ~  < ~ < ~zl), then increase of the load P0 does not affect the 
length 210 until the crack enters the state of dynamic equilibrium. 
After a corresponding load has been reached, the crack begins to 
propagate catastrophically, and the body is destroyed. The develop- 
ment of a crack is represented in this case by curve 1 in Fig. 5. If 
the curve has a stable section (w21 < ~2 < ~~ then at t0 < tl and 
/0 > ls the development of the initial crack takes place in the same 
way as in the former case (curves 2, 3, in Fig. 5). If ll < /0 < 12, 
then the crack length does not change, until the crack enters the 
state of dynamic equilibrium. As soon as this stage is reached, the 
smallest increase of the equilibrium load causes the crack to go over 
into another stable state of dynamic equilibrium, corresponding to 
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the same load, whereupon it develops stably with increasing load 
P0 until  the load P0max is reached, Beyond this value the crack 
begins to spread catastrophically, and failure ensues. The develop- 
ment  of  the crack in this case is represented by curve 4, A t / ~ <  l 0 < 
< Zs the size of the crack does not change until  it enters the state of  
dynamic equilibrium, whereupon an increase in load causes stable 
development of the crack until the load reaches the value P0max 
which causes failure (curve 5). Thus, a particular distribution of 
the cracks results in their stabilization. 

The deformation of  an infinite plate with a crack and singularities 
distributed in checkerboard fashion can be described by means  of the 
following dislocation model.  The crack is either a system of edge 
dislocations with opposite sigm, in the simplest case with the Burgers 
vector pointing along its length, or a system of pairs of dislocations 
with opposite signs. The singularities can be represented as a network 
of  vacancies or dislocation dipoles, since each singularity is consid- 
ered to be neutral. The stationary vacancies affect the propagation 
of the dislocation-crack. The result obtained shows that for a certain 
density and corresponding distribution of the vacancies the material  

becomes stronger. 
The author is indebted to G. L Barenblatt for supervision and 

assistance. 
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